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If one distinguishes between states and observables in quantum theory one obtains
from causality arguments that the quantum theoretical symmetry transformations of
non relativistic and relativistic space time do not form a group but a semigroup into the
forward light cone. These semigroup representations describe resonances and decaying
states.
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1. INTRODUCTION

Groups and their unitary representations have been the favored tools for
the derivation of symmetry properties since the advent of quantum mechanics.
They are used to simplify and reduce the number of matrix elements of important
observables like, e.g., the matrix elements of the S-operator. But in general one
does not need to assume for this purpose the existence of a group of symmetry
transformations, a continuous subset like, e.g., a semigroup of transformations
would do the job.

The main support argument in favor of a unitary group representation does not
come from a physical argument, but—most likely—originates from the Hilbert
space axiom of quantum mechanics (von Neumann, 1955). As a consequence
of the Hilbert space boundary condition the dynamical equations (Schrödinger or
Heisenberg equation) integrate to the unitary representation of the time translations
(Wigner, 1939). From here it was a straightforward generalization to the unitary
group representations of the Poincaré transformations (Wigner, 1939) and to the
domineering role of group representations in quantum theory.

It is remarkable that semigroup representations of Poincaré transformations
P were also mentioned long time ago in connection with decaying particles
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(Schulman, 1970). The semigroup representation could have been used in the
formulation of causality, specifically of “Einstein causality” (Born probabilities
can only propagate with a velocity smaller than the velocity of light) (Bohm et al.,
2002). But instead relativistic quantum field theory (Streater and Wightman, 1986)
formulated causality in the form of local commutativity. The local commutativity
was imposed upon the theory together with axioms, without making sure that
there is no conflict between these different axioms. One of the other axioms was
the unitarity of the Poincaré transformations with asymptotic completeness; the
Poincaré semigroup representations (Schulman, 1970) were ignored.

Semigroup representations for time evolution and space-time symmetry
emerged again in connection with a theory of resonance scattering and decay.
Resonances in scattering experiments or decaying states in decay experiments are
connected with an asymmetric or “irreversible” time evolution. Thus they require
a time asymmetric quantum theory, whereas the quantum mechanics based on
the Hilbert space axiom is a theory with reversible time evolution. Using Hilbert
space mathematics including Dirac kets defined as Schwartz space functions, one
runs into contradictions. Therefore, in the heuristic treatment of scattering theory
one just ignored the mathematical subtleties. One worked with mathematically
undefined Lippmann–Schwinger kets (Brenig and Hagg, 1959; Gell-Mann and
Goldberger, 1953; Lippmann and Schwinger, 1950; Newton, 1982), used ±iε to
formulate incoming and outgoing boundary conditions, restricted by fiat the time
in eiHt to t ≥ 0 (Gell-Mann and Hartle, 1994, 1995), and for decaying states one
postulated purely outgoing boundary conditions (Peierls, 1938, 1995) undisturbed
by the fact that this was in conflict with the unitary group evolution −∞ < t < ∞.

In order to relate the S-matrix pole and its scattering amplitude with Breit–
Wigner energy distribution (which defines a resonance) to exponentially evolving
Gamow vector (by which we define a decaying state), one had to replace the
Hilbert space axiom by a Hardy space axiom (Bohm et al., 1997; Bohm, 1981).
The Hilbert space axiom postulates a one-to-one correspondence between energy
wave functions for states as well as for observables to the same Hilbert space
(Lebesgue square integrable functions). The Hardy space axiom uses Hardy func-
tions analytic in the lower half plane as energy wave function of states and Hardy
functions analytic in the upper half plane as energy wave functions of observables.
This provided a mathematical distinction between a state (defined by a preparation
apparatus) and an observable (defined by a detector). It leads to semigroup rep-
resentations for time translations and to semigroup representations for symmetry
transformations of the relativistic space time. Can we accept such a modification of
quantum mechanics in view of some famous theorems (Bargmann, 1964; Wigner,
1952) to the contrary?

In this paper we shall argue that quantum mechanical space-time transfor-
mation are indeed given by semigroups. In a subsequent paper we shall dis-
cuss the observation of the main aspect, by which the semigroup differ from
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the unitary group evolution, the semigroup time t0 = 0 (Bohm et al., 1997;
Bohm, 1981).

2. FOUNDATIONS OF QUANTUM MECHANICS—GROUPS
AND SEMIGROUPS

In quantum theory one speaks of states and of observables. States are de-
scribed by density operators ρ, W , or by vectors ϕ when the state is a pure states.
Observables are described by operators A(= A†), by positive operators �, or also
by vectors ψ if � = |ψ〉〈ψ |.

A state W (for instance the in-states ϕ+ of a scattering experiment) is pre-
pared by the preparation apparatus (e.g., an accelerator). An observable � (out-
observables ψ− or “out-state”) is registered by the registration apparatus (e.g., a
detector).

The measured quantities are interpreted as the probabilities PW (�(t)) to
measure observable � in the state W or the observable ψ in the state ϕ. They are
calculated in the theory as Born probabilities and are measured as ratios of large
numbers of detector counts:

PW (�(t)) ≡ T r(�(t)W0) = T r(�0W (t)) ≈ N (t)/N, (1a)

|〈ψ−(t)|ϕ+〉|2 = |〈ψ−|ϕ+(t)〉|2 (1b)

The time evolution of the Born probabilities are described in the Heisenberg picture
with time dependent observable ψ−(t) and the state ϕ+ fixed at a time t = 0, or
in the Schrödinger picture with a time-dependent state ϕ+(t) and ψ− fixed at
t = 0. The dynamical equations are the Heisenberg equation for observables or
Schrödinger equation for states:

ih
∂

∂t
ψ−(t) = −Hψ−(t) or ih

∂

∂t
ϕ+(t) = Hϕ+(t) (2)

To solve the dynamical differential equation one has to choose the boundary
conditions, this is done in traditional quantum mechanics by the Hilbert space
axiom:

set of in-states {ϕ+} = set of out-observables {ψ−} = H (3)

The solution of the dynamical equations under the Hilbert space boundary condi-
tion (3) is, for observables

ψ−(t) = eiHtψ−, ψ− ∈ H, with − ∞ < t < ∞, (4)

and for states

ϕ+(t) = e−iH tϕ+, ϕ+ ∈ H, with − ∞ < t < ∞. (5)
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The time translation (of e.g. the observable ψ−) is given by the unitary group
U(t) ≡ eiH̄ t , −∞ < t < +∞. This means for every translation exists also and
inverse which is given by (U(t))−1 = U(−t) = e−iH̄ t .

A set of elements, fulfilling the same requirements as a group, except that not
every element has an inverse, is called a semigroup. Specifically a one parameter
semigroup of time evolution which is a solution of the Schrödinger equation (2)
has also the same form as (5):

U×(t) = e−iH×t but with t restricted to 0 ≤ t < ∞. (6)

Since the theory of resonances and decaying states has problems with axiom (3),
basically because the vectors with exponential time evolution as well as the
Lippmann–Schwinger in- and out- kets are not in H, and are also not Schwartz
space functionals like Dirac kets, we changed the boundary condition (3) to get
the analyticity property of the energy wave functions required to include Gamow
states and Lippmann–Schwinger kets (Bohm et al., 1997; Bohm, 1981). This led
to a semigroup time evolution like Eq. (6). If we consider not only time translations
but the group of all symmetry transformations of non-relativistic space-time, then
we obtain in place of Eq. (6) the quantum mechanical Galilei group. And if we
consider all (continuous) symmetry transformations of the relativistic space-time
then we obtain the Poincaré semigroup representations in the forward light cone.
This is in contrast to the prevailing viewpoint that the unitary group representations
represent the quantum physical systems. In the present paper we give heuristic
arguments in favor of the semigroup representation.

3. SYMMETRY GROUPS AND THEIR QUANTUM
PHYSICAL REPRESENTATIONS

The symmetry transformations T of non-relativistic space-time are given by
the Galilei group

G = {(R, x, v, t)}, (7a)

x0 → x′ = Rx0, x0 → x′ = x0 + x, x0 → x′ = x0 + vt, (7b)

t0 → t ′ = t0 + t. (7c)

The symmetry transformations T of relativistic space-time are given by the
Poincaré group

P = {(�, x)}, x = (t, x) (8a)

x0 → x ′ = x + �x0, �T g� = g, det(�) = 1, x ∈ R4, (8b)

(�, x)(�′, x ′) = (��′, x + �x ′) (8c)
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In quantum physics one does not deal with space-time transformations them-
selves but with representations thereof

(�, x) −→ U(�, x) (9)

where U(�, x) are operators in the linear space of states {ϕ} (or of the set of
density operators W ).

Alternatively, U(�, x) can be operators in the space of observables {ψ} (or
of observable operators A, |ψ〉〈ψ |).

A state ϕ is prepared by a preparation apparatus (e.g., an accelerator), an
observable |ψ〉〈ψ | is detected by a registration apparatus (detector).

Symmetry transformations are transformations of an observable relative to a
state or they are transformations of a state relative to and observable in the opposite
direction. It does not matter whether we do the one or the other.

To illustrate this we consider the observable

|ψ〉〈ψ | =
∫

�3x

|xi〉〈xi | d3xi = |xi〉〈xi |�3x, (10)

for the detector position in Fig. 1(b), where �3x is the volume of the (ideal)
detector. The preparation apparatus prepares the state ϕ in Fig. 1(a). The counting
rate of the detector (number of clicks per second) at the position xi of the detector
of Fig. 1(b) for the state ϕ prepared by the apparatus of Fig. 1(a) is given by the
Born probability:

〈ϕ|ψ〉〈ψ |ϕ〉 = |〈xi |ϕ〉|2�3x. (11)

This configuration is not depicted by a figure.
Now we transform the detector into |xT

i 〉〈xT
i |�3xT

i around the position xT
i to

obtain the configuration of Fig. 1(a). The Born probability is then |〈xT
i |ϕ〉|2�3xT

i .
Alternatively we can leave the detector where it was in Fig. 1(b) and trans-
form the state into the opposite direction to ϕT −1

. The Born probability is the
|〈xi |ϕT −1〉|2�xi . It is intuitively clear that the counting rate (density) for ϕ at xT

i

is equal to the counting rate (density) for ϕT −1
at xi , i.e.,

(Number of detector counts for state ϕ around Rx)

= |〈(Rx)i |ϕ〉|2 ≡ ∣∣〈xT
i |ϕ〉∣∣2 = |〈xi |ϕT −1〉|2

= (Number of counts for state ϕT −1
around xi) (12)

In general for the Born probability of an observable |ψ〉〈ψ | in the state ϕ one has
the symmetry condition,

(Probability for observable ψT in the state ϕ)

≡ Pϕ(|ψT 〉〈ψT |) ≡ |〈ψT |ϕ〉|2 = |〈ψ |ϕT −1〉|2 = P
ϕT −1 (ψ)

= (Probability for observable ψ in the state ϕT −1
). (13)
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ϕ ϕ

ϕ

i
T|<    |ϕ>|2x −1

T −1
xi|<    |       >|2

T

Fig. 1. The symmetry transformation. (a) The symmetry transformation of the detector changes
the observable. Now the detector measures the probability of ϕ at the transformed position
xT

i : |〈xT
i |ϕ〉|2�3x. (b) The symmetry transformation of the preparation apparatus changes the

state. Now the detector measures the probability of the transformed state ϕT −1
at the position

xi : |〈xi |ϕT −1〉|2�3x.

As a consequences of this symmetry condition (13) and under the following two
assumptions,

1. the standard axiom of quantum mechanics

{set of states ϕ} = {set of observables ψ} = � = H, (14)

and
2. for every transformation T = T (R) of the observable relative to the state

T : ψ → ψT , (15a)

there exists an inverse transformation also of the observables

T −1 : ψ → ψT −1
, (15b)

one obtains the standard result (Wigner theorem) (Bargmann, 1964; Wigner,
1952):

ψT = U(R) ψ, ψT −1 = U(R−1) ψ (16)

andU(R) = U†(R−1) is a unitary representation of the space-time symmetry group
(projective representations for Galilei).

The second condition (15a), (15b) is usually not explicitly stated because one
does not distinguish between the set of observables {ψ} and the set of states {ϕ} in
standard quantum mechanics. The two assumptions (14) and (15a), (15b) are thus
interrelated: If Eq. (14) is assumed then Eq. (16) follows. In particular, using the
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boundary condition (14) for the dynamical equation (e.g., the Heisenberg equation)
it follows directly (Stone, 1932; von Neumann, 1932) that the time translation for
the observable is given by

ψ(t) = U(t) ψ = eiHtψ, −∞ < t < ∞. (17a)

Similarly, in the Schrödinger picture the unitary group evolution,

ϕ(t) = U†(t) ϕ = e−iH tϕ, −∞ < t < ∞, (17b)

follows by the Stone–von Neumann theorem (Stone, 1932; von Neumann, 1932).
Conversely, if Eq. (15a) does not hold there will be a conflict with axiom (14).
Therefore the question arises: is there for every transformation of the observable
ψ also an inverse transformation? For the space translations this is obviously the
case. For every forward translation,

x0 → x0 + x, ψ → U(x) ψ, (18a)

there is also a backward translation:

x0 → x0 − x, ψ → U(−x) ψ = U−1 ψ. (18b)

The same holds for rotations, Galilei, and homogeneous Lorentz transformations.
For these subgroups there is an answer to the question: what is the probability for
the backward translated observable U−1 ψ = U(−x) ψ? Namely it is proportional
to

Pϕ(U−1 ψ) = |〈U−1 ψ |ϕ〉|2 ∼ number of detector counts at (x0 − x). (19)

Now let us consider the time translation of non-relativistic space-time:

t0 → t0 − t, ψ → U(−t) ψ for a t > 0. (20)

Is there also an answer to the question: what is the probability for an observable
at an arbitrary negative time (−t)?

The answer is no! The reason is causality in the following manifestation:
A state needs to be prepared first, at a time t = t0 (preparation time), before an
observable can be measured in it. Only for times t > t0 can the detector count the
decay products of a state prepared at t = t0 (possible detector counts before t = t0
would be dismissed as noise). Therefore it makes no sense to expect to measure
the probability of an observable ψ(t) in a state ϕ, |〈ψ(t)|ϕ〉|2 = |〈U(t)ψ |ϕ〉|2, for
t ≤ t0. The probability for the time translated observable ψ(t) in the state ϕ:

Pϕ(ψ(t)) = |〈ψ(t)|ϕ〉|2 = |〈eiHtψ |ϕ〉|2 = |〈ψ |e−iH×tϕ〉|2 (21)

is defined only for

t ≥ t0, t0 = preparationtimeofthestate ϕ (22)
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Consequently, the time translated state (Schrödinger picture)

ϕ(t) = e−iH tϕ exist physically only for t > t0 = 0. (23a)

Therefore it should be defined mathematically only for t > 0. Equivalently for the
reason of causality (22), (in the Heisenberg picture) the time translated observable

ψ(t) = eiHtψ exists physically only for t > t0 = 0. (23b)

The mathematical theory has to reproduce these facts. This means the set of
states and the set of observables must not fulfill the standard axiom of quantum
mechanics (14) since that leads to Eqs. (17a) and (17b). One needs a new hypothesis
of quantum theory that predicts the causal time evolution (22), (23a), and (23b).

Experimentally one distinguishes between the states (which are experimen-
tally defined by the preparation apparatus, accelerator) and the observables (which
are experimentally defined by the detector, registration apparatus). One has to do it
also in the theory. The new hypothesis which distinguishes theoretically between
states and observables is the following axiom:

The set of prepared states {ϕ+} defined by preparation

apparatus (e.g., in-states) is described by the Gel’fand

triplet: {ϕ+} = �− ⊂ H ⊂ �×
−. (24a)

The set of observables {ψ−} defined by registration

apparatus (e.g., in-observables) is described by the Gel’fand

triplet: {ψ−} = �+ ⊂ H ⊂ �×
+. (24b)

Here �∓ are different (dense) Hardy subspaces of the same Hilbert space, H
(Bohm et al., 1997; Bohm, 1981). As a consequence of the Paley-Wiener theorem
[Appendix (Bohm et al., 1997; Bohm, 1981) and references thereof].

In these spaces �− and �+ the Schrödinger and the Heisenberg equation
integrate to semigroup solutions:

ih
∂ϕ+(t)

∂t
= Hϕ+(t), ϕ+ ∈ �−

=⇒ ϕ+(t) = e−iH tϕ+ ≡ U†
−(t)ϕ+, for 0 ≤ t < ∞ (25a)

ih
∂ψ−(t)

∂t
= −Hψ−(t), ψ− ∈ �+

=⇒ ψ−(t) = eiHtψ− ≡ U+(t)ψ−, for 0 ≤ t < ∞ (25b)

In the same way as the Hilbert space is realized by the space of Lebesgue
square integrable function, the two Hardy space �∓ can also be defined as
the spaces of (their) energy wave functions. The space �− is defined (is
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mathematically “realized”) by the energy wave functions ϕ+(E) = 〈+Ejj3|ϕ+〉
which are Hardy functions analytic in lower complex energy plane. The space
�+ is defined by the energy wave functions ψ−(E) = 〈−Ejj3|ψ−〉 which are
Hardy and analytic in the upper complex energy plane. The kets |Ejj3

±〉 ∈ �×
∓

are the (mathematically defined) Lippmann-Schwinger kets |E±〉 ≡ |E ± iε±〉
representing the in- and out- going plane waves. [Remark regarding notation:
since, by hypothesis (24a), 〈+E|ϕ+〉 is Hardy in the lower complex semi plane
C−, 〈ϕ+|E + iε+〉 = (〈+E + iε|ϕ+〉)∗ is Hardy in the upper complex semi plane,
i.e., for E + iε; and similar for |E − iε−〉. The mismatch between the notations
for vectors ϕ+ and for spaces �− = {ϕ+} is due to the mismatch of the notation
in physics of scattering theory (for in-states ϕ+) and the notation in mathematics
of Hardy spaces for �−, analytic in C−.]

The distinction between the axiom (14) of standard quantum mechanics and
the new Hardy space axiom (3.) is that according to Eq. (14) the energy wave
functions of state and observables are (classes of Lebesgue-) square integrable
functions. In most physics problems one does not worry much about the Lebesgue
integrability but instead wants Dirac kets. Then one replaces the hypothesis (14)
by a slightly stronger condition on the set of states {ϕ}:

{ϕ} = {ψ} = � ⊂ H ⊂ �×. (26)

Here the energy wave functions are Schwartz space functions {ϕ(E)} = {ψ(E)} =
S, and the Dirac kets |E〉 ∈ �× are defined as functionals on the Schwartz space.

Integrating the Schrödinger and Heisenberg equations under the boundary
conditions (26) would still lead to the group evolution (Wickramasekara and
Bohm, 2002).

The Lippmann-Schwinger kets |E ± iε±〉, because of the infinitesimal imag-
inary part ±iε, cannot be ordinary Dirac kets (Schwartz space functionals)—
though this is always tacitly assumed, also for the relativistic case (Weinberg,
1995). The time asymmetric boundary conditions contained in the Lippmann–
Schwinger (integral-) equations do not admit unitary group evolutions.

The energy wave functions of the new hypothesis (3.) are not only smooth
and rapidly decreasing, but they are also boundary values of analytic functions
in the upper (for {ψ−(E)}) and lower (for {ϕ+(E)}) complex semi plane (of the
second or lower sheet of the S-matrix). The dual spaces �×

± do not only contain
the Lippmann-Schwinger kets |E ± iε±〉 ∈ �×

∓ and their analytic continuation
into the complex semi planes, but they contain also generalized eigenvectors
of the self adjoint Hamiltonians with eigenvalues that belong to the resonance
poles (Bohm et al., 1997; Bohm, 1981) and those that, e.g., belong to higher
order poles and which come in Jordan blocks (Antoniou et al., 1998; Bohm
et al., 1997; Baumgärtel, 1984). The importance of this axiom is: it provides a
consistent and unified theory of resonances and decay. For this the analyticity and
Hardy space property in energy E is needed (Bohm et al., 1997; Bohm, 1981).
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In non relativistic case this theory is like the Weisskopf-Wigner approximation
with continuum term. In the relativistic case one replaces the energy E by the
invariant energy squared s = pµpµ and obtains a relativistic resonance defined by
the S-matrix pole sR = (MR − i	R/2)2 (Bohm et al., 2003).

As a consequence of the Hardy space analyticity in E all the vectors have a
semigroup time evolution like our empirical conclusion Eqs. (23a) and (23b). The
semigroup for the elements of �×

+ is given by the conjugate operators U×
+ (t) of

the operator

U+(t) ≡ U(t)|�+ = eiHt |�+ = eiH+t . (27)

This conjugate operator is a uniquely defined extension of the Hilbert space adjoint
operator U†(t) to the larger space �×

+ ⊃ H:

U†
+(t) ⊂ U×

+ (t) = (eiH+t )× = e−iH×
+ t . (28)

Here U+ and H+ denote the restrictions of the operators U and H in the space H
to the (dense) subspace �+, and H×

+ is the conjugate operator of H+ = H |�+ [12].
Similarly for the elements of �×

− the conjugate operator U†×(t) of the oper-
ator

U†
−(t) ≡ U(−t)|�− = e−iH−t (29)

is given by as the unique extension of the Hilbert space operator U(t) to �×
− ⊃ H:

U(t) = U††(t) ⊂ U†×
− (t) = (e−iH−t )× = eiH×

− t . (30)

Here U†
−(t) and H− = H |�− denote the restrictions of the Hilbert space operators

U†(t) and H to the dense subspace �−.
The Hardy space axiom thus accomplishes a dual purpose:

1. it provides the analyticity properties in energy that are needed to obtain a
consistent theory of resonances and decay,

2. it leads to the semigroup evolution needed for the causality condition.

The property of time evolution extends to Galilei transformations. Complex
energy and time asymmetry are thus complementary aspect of one and the same
theoretical hypothesis. That these two diverse phenomena like resonance and
decay on the one hand and causality on the other have the same theoretical basis
is remarkable. Since the time-translation subgroup is represented by semigroup of
operators in the space of observables �+,

U+(1, t, 0, 0) = U+(t) = eiH+t , (31)

and the space of states �−,

U†
+(1,−t, 0, 0) = U†

+(t) = U(−t)|�− = e−iH−t , (32)
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the Galilei group of non relativistic space-time is represented in the space of
observables by the semigroup U+(R, t, x, v), t ≥ 0 and in the space of states by
the semigroup U−(R,−t, x, v), t ≥ 0.

The same holds for the relativistic space-time (Bohm et al., 2003). The
transformations of the detected observables relative to the prepared state form
only a semigroup into the forward light cone,

P+ = {(�, x) : (�0
0 ≥ 1, det� = +1), x2 = t2 − x2 ≥ 0, t ≥ 0}. (33)

The physical interpretation of this restriction to the semigroup P+ is the following:
Let

|〈ψ |[m2, j ] p̂j3
−〉|2 (34)

be the probability density to detect the observable ψ (decay product) in the “gen-
eralized” momentum eigenstate |[m2, j ] p̂j3

−〉 (Wigner basis ket). Then

〈U+(�, x)ψ |[m2, j ] p̂j3
−〉 would be the probability amplitude for

the transformed observable U+(�, x)ψ

in the same state |[m2, j ] p̂j3
−〉 ∈ �×

+.

This is equal to

〈ψ |U×
+ (�, x)|[m2, j ] p̂j3

−〉 the probability amplitude forψ

in the transformed “generalized”

state U×
+ (�, x)|[m2, j ] p̂j3

−〉 ∈ �×
+.

The restriction of the transformations (of observable relative to state) to semigroup
transformations of the forward light cone U+(�, x), (�, x) ∈ P+ means

1. t ≥ 0: a state must be prepared first (at t = 0) before one can speak of
probabilities for observables (causality),

2. x2 = t2 − x2 ≡ t2 − r2/c2 ≥ 0 or t2 ≥ r2/c2: Born probabilities (“the
signal”) can only propagate with a velocity r/t which is smaller than the
velocity of light, r/t ≤ c (Einstein causality).

Semigroup representations [sR, j ] for relativistic quasistable particles were identi-
fied by Schulman (1970) in his classification of irreducible representations of P+.
They were also derived from the resonance pole position at sR = (MR − i	R/2)2

of the j -th partial S-matrix Sj (s) (Bohm et al., 2003).

4. SUMMARY AND CONCLUSIONS

Using causality arguments we found that quantum mechanical symmetry
transformations of the observable relative to the state (U+(t) (non relativistic)
and U+(�, x) (relativistic)) do not form a group but only a semigroup. This is in
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conflict with the consequences of the standard axiom (14) of quantum mechanics.
Experimentally one always distinguishes between states (preparation apparatus,
accelerator) and observables (registration apparatus, detector). If one also distin-
guishes mathematically between states and observables, one is led to the new
axiom (3.). From the new hypothesis (3.) one derives semigroup representations
of space-time transformations, e.g., ψ−(t) = eiHtψ− for t ≥ 0. This introduces
a new concept, the semigroup time t0 = 0, whereas standard quantum mechanics
does not distinguish any particular time. What is the meaning of this beginning of
time t0? Why have we not been more aware of this t0?
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Baumgärtel, H. (1984). Analytic Perturbation Theory for Matrices and Operators, Akademie Verlag,

Berlin, chapter 2 for the mathematics of Jordan vectors in the context needed here.
Bohm, A. (1981). Journal of Mathematical Physics 22, 2813.
Bohm, A., Harshman, N. L., and Walther, H. (2002). Physical Review A 66, 012107.
Bohm, A., Kaldas, H., and Wickramasekara, S. (2003). Fortschritte der Physik 51, 569; 604.
Bohm, A., Loewe, M., Maxson, S., Patuleanu, P., Gadella, M. (1997). Journal of Mathematical Physics

38, 1.
Bohm, A., Maxson, S., Loewe, M., and Gadella, M. (1997). Physica A 236, 485.
Brenig, W. and Hagg, R. (1959). Fortschritte der Physik 7, 183.
Gell-Mann, M. and Goldberger, H. L. (1953). Physical Review 91, 398.
Gell-Mann, M. and Hartle, J. B. (1994). In: J. J. Halliwell et al. (eds.), Physical Origins of Time

Asymmetry, Cambridge University Press, Cambridge.
Gell-Mann, M. and Hartle, J. B. (1995). UCSBTH-95-28, University of California at Santa Barbara,

gr-qc/9509054 [and references thereof].
Lippmann, B. A. and Schwinger, J. (1950). Physical Review 79, 469.
Newton, R. G. (1982). Scattering Theory of Waves and Particles, 2nd ed., Chap. 7, Springer-Verlag,

New York.
Peierls, R. (1938). Proceedings of the Royal Society of London, Series A 166, 277.
Peierls, R. (1995). In: E. M. Bellamy, et al. (eds.), Proceedings of the 1954 Glasgow Conference on

Nuclear and Meson Physics, Pergamon Press, New York.
Schulman, L. S. (1970). Annals of Physics 59, 201.
Stone, M. H. (1932). Annals of Mathematics 33, 643 (1932)
Streater, R. F. and Wightman, A. S. (1986). PCT, Spin & Statistics, and All That, Benjamin, New York.
von Neumann, J. (1932). Annals of Mathematics 33, 567 (1932).
von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics, Princeton University

Press, Princeton.
Weinberg, S. (1995). The Quantum Theory of Fields, vol. 1, Cambridge University Press, Cambridge.
Wickramasekara, S. and Bohm, A. (2002). Journal of Physics A 35, 807.
Wigner, E. P. (1939). Annals of Mathematics 40, 149.
Wigner, E. P. (1952). Group Theory and Its Applications to Quantum Mechanics of Atomic Spectra,

Academic Press, New York.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


